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Abstract
We present calculations for the oscillator strength of the recombination of excitons bound to
phosphorus donors in silicon. We show that the direct recombination of the bound exciton
cannot account for the experimentally measured oscillator strength of the no-phonon line.
Instead, the recombination process is assisted by an Umklapp process of the donor electron
state. We make use of the empirical pseudopotential method to evaluate the Umklapp-assisted
recombination matrix element in second-order perturbation theory. Our result is in good
agreement with experiment. Being potentially useful for quantum computing, the process of
Umklapp-assisted recombination can be used to detect optically the spin state of the nucleus of
a phosphorus donor, which requires that the energy levels of the nuclear spin are optically
resolvable. We therefore present two methods to improve the optical resolution of the optical
detection of the spin state of a single nucleus in Si:P.

1. Introduction

Proposals on quantum computing in semiconductors have
recently attracted a great deal of attention [1, 2]. The
main idea is to use the electron spin of quantum dots in
semiconductors [3] or the nuclear spin of shallow donors in
silicon [4] as a qubit for quantum information processing. A
complete quantum computation consists of, besides the single-
and two-qubit operations, the initialization and the readout
of the qubits. While the initialization and the readout of
the electron spin in quantum dots have been successfully
demonstrated experimentally [5, 6], it remains an experimental
challenge to read out the nuclear spin of a donor in silicon.

It has recently been proposed that the photoluminescence
of excitons bound to phosphorus donors can be used to
detect the spin state of a single donor nucleus in silicon [7].
This scheme for optical readout could render the recent
quantum computing proposal using conditional NMR and ESR
pulses feasible [9, 10]. Although experiments have shown
that the recombination of the bound exciton follows strong
optical selection rules [11], it has been unclear what physical
process is responsible for the no-phonon line of the optical
recombination of the bound exciton. In contrast to the phonon-
assisted recombination, the no-phonon line represents the
recombination process without phonon assistance. A shell
model that accounts for the selection rules was proposed
in [12]. The shell model was later improved in [13, 14] by a
Hartree–Fock calculation that takes the multivalley character of

indirect bandgap semiconductors into account and is therefore
in good agreement with the measured fine-structure excitation
spectrum of the bound exciton complex [15]. The Hartree–
Fock calculation fails to predict binding energies. This
problem was overcome by a density-functional calculation
that takes the correlation energy into account [16]. However,
neither model gives a satisfactory physical description of the
recombination process for the no-phonon line and is thus
unable to quantitatively reproduce the measured oscillator
strength fexp in [17]. Our calculations show that the probability
for direct recombination of the bound exciton is negligibly
small. Here we present a physical model of the recombination
process that accurately reproduces the oscillator strength fexp

of the no-phonon line. In our model the recombination of
the exciton is assisted by the Umklapp process of the donor
electron. In section 2 we give a detailed description of our
model. In section 3 we perform a Hartree approximation to
calculate the envelope functions of the trion state of the two
electrons and the hole. The Coulomb interaction of the two
electrons and the recombination of one of the electrons with
the hole are computed in section 4. For the evaluation of the
recombination matrix element, we make use of the empirical
pseudopotential method [18–20] to calculate the bandstructure
of silicon with 137 reciprocal lattice vectors at 100 points
inside the first Brillouin zone in the X direction. This technique
is reviewed in appendix A. Then we use the resulting Bloch
states to calculate the oscillator strength of the Umklapp-
assisted recombination in second-order perturbation theory,
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Figure 1. Bandstructure of silicon in the direction of the X point.
The minimum of the conduction band with �1 symmetry is located
at kz = k0 = 0.85ksi. Due to the Coulomb interaction the donor
electron experiences an Umklapp process, whereas the electron of
the bound exciton is virtually excited into the conduction band with
an energy mismatch of Edonor − Ec(ku).

which is shown in section 5. In section 6, as an application of
our model, we present two methods based on optically detected
magnetic resonance (ODMR) to improve the resolution of the
readout of a nuclear spin of a donor electron in silicon.

2. Physical model

In a typical photoluminescence experiment a laser with
frequency well above the direct bandgap of silicon Edirectgap =
3.4 eV produces electron–hole pairs [11]. The excited
electrons relax via electron–phonon interaction to the minima
of the conduction band, which lie at the six wavevectors
±kx0 = (±k0, 0, 0), ±ky0 = (0,±k0, 0) and ±kz0 =
(0, 0,±k0) with k0 = 0.85ksi in the first Brillouin zone.
ksi = 2π/d is the wavevector at the X point of the reciprocal
lattice of silicon, which has a lattice constant of d = 5.43 Å.
After this relaxation process the exciton gets bound to the
phosphorus donor. The electron of the bound exciton and
the donor electron form a spin singlet state. Then one of
the two electrons recombines with the hole by emitting a
photon, which is detected in the photoluminescence. In our
physical model this recombination process is assisted by the
Coulomb interaction of the two electrons, whereby one of
them experiences an Umklapp process and the other one is
virtually excited into the conduction band with momentum
ku and energy Ec(ku) (see figure 1). In other words, the
Coulomb interaction of the two electrons in the case of the
no-phonon line plays the role of the phonon assistance in the
case of the single-phonon line. Due to the Coulomb exchange

Figure 2. Before the Coulomb interaction both electrons can be
described by the broad Gaussian wavefunction at kz = 0.85ksi, which
represents the initial wavefunction for both electrons. After the
Coulomb interaction the final state of electron 2 is represented by the
broad Gaussian wavefunction at kz = 1.15ksi = −0.85ksi (modulo
ksi), whereas the final state of electron 1 is virtually excited into the
conduction band and can therefore be described by a narrow
delta-peaked wavefunction with wavevector ku. Since the Coulomb
interaction conserves the total momentum of both electrons (see
equation (22)), the transition amplitude MC in equation (21) contains
an integral over all the momentum space with scattering momenta for
electrons 1 and 2 that are equal in magnitude. Therefore the arrows
in the interaction processes (a) and (b) have the same length. This
integral in MC can be seen as a sum over interaction processes, such
as (a) and (b). As figure 3 shows, the Coulomb interaction amplitude
MC has a maximum at ku = 0.55ksi due to the interaction process (b),
where the final state of electron 2 has a maximum overlap with the
Umklapp-scattered bound state ψ̃2(k, k00). However, the largest
contribution to the Umklapp-assisted recombination, i.e. to the
integral in Mr in equation (26), comes from the interaction process
(a), because the overlap of the virtually excited electron 1 and the
hole is largest around ku = 0 (see figure 4). In order to obtain the full
recombination amplitude, we have to sum over all the virtually
excited states |ku〉 of the scattered electron. Note that this
momentum-conserving interaction is allowed because of the broad
distribution of the bound states at kz = 0.85ksi.

interaction they prefer to stay in the same valley. We start
with the entangled two-electron six-valley symmetric ground
state |kx0〉1|kx0〉2 + | − kx0〉1| − kx0〉2 + |ky0〉1|ky0〉2 + | −
ky0〉1| − ky0〉2 + |kz0〉1|kz0〉2 + | − kz0〉1| − kz0〉2. The
Coulomb interaction has its maximum amplitude if the final
state is |−kx0〉1|kxu0〉2 + |kx0〉1|−kxu0〉2 + |−ky0〉1|kyu0〉2 +
|ky0〉1|−kyu0〉2 +|−kz0〉1|kzu0〉2 +|kz0〉1|−kzu0〉2 (see process
(b) in figure 2). Electron 1 gets scattered onto itself, because
k0 + 0.3ksi = −k0 (modulo ksi) in the first Brillouin zone.
Due to momentum conservation we get ±kxu0 = (±ku0, 0, 0),
±kyu0 = (0,±ku0, 0), and ±kzu0 = (0, 0,±ku0) with ku0 =
0.55ksi = k0 − 0.3ksi. While the initial and the final state
of electron 1 are bound states of broad Gaussian shape in
k-space, the initial state of electron 2 is a bound state of
broad Gaussian shape and the final state is a free state of
narrow delta-peak shape, as is shown in figure 2. Although the
Coulomb interaction is strongest for process (b) in figure 2, the
recombination amplitude is rather small at ku = ku0 = 0.55ksi.
This means that interaction processes with ku > ku0 can be
safely neglected. It turns out that the largest contribution to the
Umklapp-assisted recombination comes from the continuum of
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scattered states around ku = 0, which is depicted by process (a)
in figure 2. The reason for this is that the hole of the bound
exciton is centered at the maximum of the valence band at
k = 0.

In order to calculate the Coulomb interaction between
the two electrons and the recombination of one of the two
electrons with the hole, we need to compute their envelope
wavefunctions (see figure 2) and their Bloch wavefunctions.
The envelope of the trion state of two electrons and one hole
bound to the phosphorus impurity is computed in the Hartree
approximation, which allows us to represent the trion state
by single-particle wavefunctions of the two electrons and the
hole. The Bloch wavefunctions are computed by means of the
empirical pseudopotential method (see appendix B). For the
Coulomb interaction between the trion state and the scattered
state, we consider only the Coulomb interaction between
the two electrons. Both the Coulomb interaction and also
the recombination of one of the electrons with the hole are
computed in k-space. Our goal is to calculate the transition
amplitude of the Umklapp-assisted recombination in second-
order perturbation theory, which is described by

Mtot =
∑

j=±x,±y,±z

1

6k0

∫ k0

0
dku

Mr MC

Edonor − Ec(ku)
, (1)

where we use the notation k±x0 = ±kx0, k±y0 = ±ky0, and
k±z0 = ±kz0. Edonor is the energy level of the donor electron
and Ec(ku) is the energy of the conduction band. The Coulomb
matrix element is given by

MC = 〈
ψ ′

1(k ju)ψ
′
2(−k j0)ψh(0) |VC|ψ1(k j0)ψ2(k j0)ψh(0)

〉
,

(2)
and the recombination matrix element by

Mr = 〈
ψ ′

2(−k j0) |Vr|ψ ′
1(k ju)ψ

′
2(−k j0)ψh(0)

〉
. (3)

The Umklapp assistance becomes obvious when looking at
electron 2 that makes a transition from ψ2(k j0) to ψ ′

2(−k j0).
Electron 1 with wavevector k1 is scattered via the Coulomb
potential

VC = q2e−r
√
ξ 2

l +2ξ 2
t

4πεr
(4)

off electron 2 with wavevector k2, thereby conserving the
momenta, i.e. k1 + k2 = k′

1 + k′
2. After the Umklapp process

of electron 2 the virtually excited electron with wavevector k′
1

recombines with the bound hole with wavevector k′
h = k′

1 via
the electron–photon interaction

Vr = q

m t
A⊥ p⊥, (5)

which results in the emission of a photon that can be seen in
a photoluminescence experiment. ε0 = 8.854 × 10−12 F m−1

is the dielectric constant of the vacuum, and εr = 11.56 is
the relative dielectric constant of silicon, which are combined
to ε = ε0εr [21]. So the refractive index of silicon is about
ν = √

εr = 3.4. ξl = 4m lkFq2/π h̄2 = 1.9 × 109 m−1 and
ξt = 4m tkFq2/π h̄2 = 4.0 × 108 m−1 are the Thomas–Fermi
screening lengths in longitudinal and transverse directions,

where kF = (3π2n0)
1/3 is the Fermi wavevector and n0 =

1/L3 is the density of the donor electrons [22]. The distance
between the donor electrons is about L = 4 nm [23]. The
longitudinal mass in silicon is m l = 0.9163me, where me =
9.1095 × 10−31 kg is the bare electron mass. The transverse
mass in silicon is m t = 0.1905me.

3. Hartree approximation

Let us start by analyzing the initial state of the trion. Due
to the Coulomb exchange interaction the two electrons are in
a spin singlet state (|↑1↓2〉 − |↓1↑2〉)/

√
2, and their orbital

wavefunction is symmetric in the valley combinations, i.e.

ψ12 = 1√
6

∑

j=±x0,±y0,±z0

F1k jφ1k j F2k jφ2k j . (6)

For the Hartree approximation the envelope function of a
bound electron is chosen to be

Fekz0(r) = F1kz0(r) = F2kz0(r) = 1√
a2b

e− |x |+|y|
a e− |z|

b , (7)

where a = 25.1 Å and b = 14.4 Å (see [24, 25]). The Bloch
wavefunction of an electron is given by

φekz0(r) = φ1kz0(r) = φ2kz0(r) = ucz(r)eik0 z, (8)

where k0 = 0.85ksi is the distance from the 	 point to the
minimum of the conduction band in the X direction (see next
section). The Bloch wavefunction of the hole is

φh(r) = u∗
v(r). (9)

The effective Hartree potential VhH(r) = VD(r) + 2Ve(r) that
is felt by the hole is a superposition of the donor potential
VD(r) = e/4πεr and the effective Hartree potential of the two
electrons, which is determined by

Ve(r) = − e

4πε

∫ ∣∣ϕ(r′)
∣∣2

|r′ − r| d3r ′

= − e

2ε

∫ −1

1

∫ ∞

0

r ′2 ∣∣ϕ(r′)
∣∣2

∣∣∣
√

r ′2 + r 2 − 2rr ′ cos θ
∣∣∣
dr ′ d cos θ

= − e

2ε

∫ r

0

r ′2 ∣∣ϕ(r′)
∣∣2

r
dr ′ − e

2ε

∫ ∞

r
r ′ ∣∣ϕ(r′)

∣∣2
dr ′. (10)

Only for evaluation of Ve(r) we approximate the electron
envelope wavefunctions by

ϕ(r ′) = e−r ′/b

√
πa3/2

opt

, (11)

where aopt = (2a + b)/3. The electron envelope wavefunction
looks like a hydrogen wavefunction for n = 1 and l = 0. Then
we obtain

VhH(r) = e

4πεr

[
−1 + 2

(
1 + r

aopt

)
e−2r/aopt

]
, (12)

3
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which is shown in figure 5. Solving numerically for the ground
state of VhH(r) by means of the finite difference method leads
to a binding energy of −0.02 eV. The envelope wavefunction
of the bound hole can be well approximated by

Fh(r) =
(

1

2c

)5/2 r√
3π

e− r
2c , (13)

where c = 20 Å. The hole envelope wavefunction looks like a
hydrogen wavefunction for n = 2 and l = 1.

For self-consistency we also calculate the effective Hartree
potential VeH(r) = VD(r) + Ve(r) + Vh(r) that is felt by one
of the two electrons, for which we obtain

VeH(r) = e

4πεr

[
1 +

(
1 + r

aopt

)
e−2r/aopt

−
(

1 + 3r

4c
+ r 2

4c2
+ r 3

24c3

)
e−r/c

]
. (14)

The ground state of the bound electron is well approximated
by equation (11) with aopt ≈ (2a + b)/3 = 21.5 Å. Thus our
values for aopt and c are self-consistent.

4. Coulomb and recombination matrix elements

We are going to calculate the matrix elements MC and Mr

in the reciprocal lattice space by Fourier transforming the
wavefunctions. The Bloch wavefunctions can be expanded in
reciprocal lattice vectors as

φekz0(r) = eikz0z
∑

G

ucGeiG·r (15)

for the electron wavefunctions and

φh(r) =
∑

G

u∗
vGe−iG·r (16)

for the hole wavefunction. Thus the electron wavefunctions in
k-space are given by ψ̃e(k, kc) = ∑

G ucGψ̃eG(k, kc) with

ψ̃eG(k, kc) =
(

2

πa2b

) 3
2 1(

1
a2 + (kx + Gx)2

)

× 1(
1
a2 + (ky + G y)2

) 1(
1
b2 + (kz + Gz − kc)2

) , (17)

centered at kc. For simple Fourier transformation in Cartesian
coordinates we approximate the hole envelope wavefunction
by

Fh(r) =
(

1

2c

)5/2 |x | + |y| + |z|√
3

e− |x |+|y|+|z|
2c . (18)

The hole wavefunction is then well approximated by ψ̃h(k) =∑
G u∗

vGψ̃hG(k) with

ψ̃hG(k) =
(

2

π(2c)3

) 3
2 1(

1
(2c)2 + (kx − Gx)2

)

× 1(
1

(2c)2 + (ky − G y)2
) 1(

1
(2c)2 + (kz − Gz)2

) . (19)

Figure 3. The Coulomb interaction amplitude MC in equation (21)
between the electron of the bound exciton and the donor electron has
a maximum at ku = 0.55ksi.

So the initial wavefunctions of the two electrons are ψ̃1(k) =
ψ̃2(k) = ψ̃e(k, kc = k0). The wavefunction of the
virtually excited electron in k-space is given by ψ̃ ′

1(k
′) =∑

G ucGψ̃1G(k′) with

ψ̃1G(k′) =
(

2

πa2b

) 3
2 1(

1
a2

u
+ (kx + Gx)2

)

× 1(
1
a2

u
+ (ky + G y)2

) 1(
1
a2

u
+ (kz + Gz − ku)2

) , (20)

where au = 1000d . The wavefunction of the Umklapp-
scattered electron 2 is given by ψ̃ ′

2(k
′) = ψ̃e(k, kc = k00),

where k00 = 1.15ksi, and the intermediate hole wavefunction
by ψ̃ ′

h(k
′) = ψ̃h(k). Note that only the two electrons scatter

off each other.
Since the Coulomb interaction is local within each

Brillouin zone, interference effects can be neglected and thus
it is sufficient to calculate the Coulomb interaction matrix
element within the first Brillouin zone, i.e.

MC = 〈
ψ ′

1ψ
′
2 |VC|ψ1ψ2

〉 = q2

ε

∫
d3k ′

1

∫
d3k1

∫
d3k2

× ψ̃ ′∗
10(k

′
1)ψ̃

′∗
20(k1 − k′

1 + k2)
1

(
k1 − k′

1

)2 + ξ 2

× ψ̃10(k1)ψ̃20(k2), (21)

where we used the relation
∫

d3r1

∫
d3r2e−ik′

1·r1 e−ik′
2·r2

q2e−ξr12

4πεr12
eik1·r1 eik2·r2

= q2

(2π)3ε

∫
d3k12

δ(k1 − k′
1 + k12)δ(k2 − k′

2 − k12)

k2
12 + ξ 2

= q2

(2π)3ε

1
(
k1 − k′

2

)2 + ξ 2
δ(k1 − k′

1 + k2 − k′
2), (22)

where r12 = r1 − r2 and k12 = 2π/r12. MC is plotted
in figure 3. Note that there is no

√
2 term in equation (21),

because the bound hole, being in a specific spin state, chooses
only one spin state out of the singlet state. So only the bright
exciton recombines. The dark exciton cannot recombine.
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Figure 4. The recombination amplitude Mr in equation (26) for the
unbound scattered electron is largest around ku = 0.

Numerical calculations show that the Coulomb potential is well
approximated by

ṼC(k1 − k′
1) ≈ q2

ε

1
(
k1z − k ′

1z

)2 + ξ 2
, (23)

i.e. only the longitudinal dependence of the Coulomb potential
in the z direction is taken into account. The reason for this
good approximation is that the conduction band at kz =
k0 is much flatter in the longitudinal direction than in the
transverse direction, which means that the wavefunctions of
the bound electrons are broad in the longitudinal direction but
narrow in the transverse direction. This is also reflected by
the difference in effective longitudinal and transverse masses,
m l = 0.9163me and m t = 0.1905me, respectively. Then the
integrations in x and y directions can be solved analytically,
which yields

MC = τ 2
⊥

q2

ε

∫
dk ′

1z

∫
dk1z

∫
dk2zψ̃

′∗
10(k

′
1z)

× ψ̃ ′∗
20(k1z − k ′

1z + k2z)
1

(
k1z − k ′

1z

)2 + ξ 2

× ψ̃10(k1z)ψ̃20(k2z), (24)

where τ⊥ = π
a . Since the scattered electron state ψ̃ ′∗

10(k
′
1z) is

unbound, we can treat it as the square root of a delta-function

with width au , i.e. ψ̃ ′∗
10(k

′
1z) =

√
δ(au)(k ′

1z − ku). This means

that we can approximate the integral
∫

dk ′
1zψ̃

′∗
10(k

′
1z)h(k

′
1z) by

h(ku)ζ , where ζ = ∫
dk ′

1zψ̃
′∗
10(k

′
1z), for any function h(k ′

1z).
Thus we obtain

MC = τ 2
⊥ζ

q2

ε

∫
dk1z

∫
dk2zψ̃

′∗
20(k1z − ku + k2z)

× 1

(k1z − ku)
2 + ξ 2

ψ̃10(k1z)ψ̃20(k2z), (25)

which is solved numerically (see figure 3). The maximum of
MC is located at ku = 0.55ksi, which is due to the interaction
process (b) shown in figure 2. In the case of the recombination
we cannot neglect interference effects, because the electron–
photon interaction is nonlocal in k-space. We obtain

Mr = h̄q A⊥
m

∫
d3k ′

hψ̃h
′∗(k′

h)k
′
h⊥ψ̃

′
1(k

′
h), (26)

Figure 5. The effective Hartree potential produced by the donor and
the two electrons. The hole wavefunction is bound in the ground
state with a binding energy of −0.02 eV. The solid wavefunction was
calculated by means of the finite difference method. The dashed
wavefunction is given in equation (13).

which is solved numerically. Mr has only a single peak at
ku = 0 with a width of about k0/100.

In order to evaluate the oscillator strength, we need to
calculate the bandstructure of silicon, which is reviewed in
appendix A and shown in figure 1.

5. Oscillator strength

In textbooks such as [27] the oscillator strength is defined as

f = 2

m Eni
|〈n| p |i〉|2 , (27)

where Eni is the energy difference between the initial |i〉 and
the final state |n〉. For our Umklapp-assisted recombination the
oscillator strength is thus given by

ftot = 2

mopt Egap

∣∣∣∣∣
ghhgsMtot

q
mt

A⊥

∣∣∣∣∣

2

, (28)

where Egap = 1.1 eV is the indirect bandgap energy, mopt =
3/(1/m l + 2/m t) is the effective mass of the electron that
ensures the sum rule

∑
n fni = 1 [28], ghh = 2 is the

degeneracy of the heavy-hole band and gs = 2 is the spin
degeneracy. We calculate first numerically the Coulomb
interaction amplitude MC(ku), which is shown in figure 3.
Then we calculate numerically the recombination amplitude
Mr(ku). Inserting MC(ku) and Mr(ku) into equation (1) and
integrating over ku yields

ftot = 1.3 × 10−6, (29)

which is in good agreement with the oscillator strength fexp =
7.1 × 10−6 of the recombination of an exciton bound to a
phosphorus donor in silicon reported in [17]. Our calculation
is very robust, because all our approximations are controlled.
For example, deviations of 1% of the width of the Gaussian
wavefunctions of the bound electrons and the hole yield
negligible changes of the resulting oscillator strength ftot. As
another example, if we change the width of the hole envelope

5
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Figure 6. The energy levels of the electron and nuclear spin of the
donor electron are shown at the bottom. The energy levels of the
bound hole are shown at the top.

wavefunction by a factor of 10, we obtain a change in oscillator
strength by a factor of about 3. For comparison, the direct
recombination of the bound electron with the bound hole over
the indirect bandgap has an oscillator strength of fdirect =
4 × 10−33. Thus our calculation shows that the no-phonon line
in Si:P is due to the Umklapp-assisted recombination of the
bound exciton. It would be interesting to check if our theory
of Umklapp-assisted recombination can also account for the
oscillator strengths of other donors. These calculations will be
presented elsewhere.

6. Optical readout

The Umklapp-assisted recombination described in the previous
sections follows strong optical selection rules, as shown in
appendix A. Therefore it can be used to detect the spin state
of a single nucleus in the phosphorus donor, provided that the
laser produces excitons continuously that can bind to the single
phosphorus impurity. The small amount of photoluminescence
is then compensated by a time ensemble of measurements. The
basic scheme for this optical detection of the nuclear spin was
presented in [7]. However, one major obstacle that was not
addressed in [7] is the bad optical resolution of the Umklapp-
assisted recombination process, which makes the nuclear spin
readout impossible. In this section we show two methods that
can be used to improve the optical resolution such that the
optical detection of the spin state of a single nucleus becomes

Table 1. The hyperfine and Zeeman splitting of the spin states of the
donor electron.

Hz (T) geμB Hz (meV) gnμn Hz (μeV) �↑e (μeV) �↓e (μeV)

3.0 0.35 0.21 0.03 0.46
5.0 0.58 0.36 −0.11 0.61
7.0 0.81 0.50 −0.25 0.75

possible. The first method is inspired by the optically detected
magnetic resonance technique (ODMR) [8], where the Rabi
oscillation that is induced by electron spin resonance (ESR)
alters the lifetime of the bound exciton and is thus optically
detectable. Since the transition from the bound hole state
MJ = −3/2 to MS = +1/2 is forbidden, mixing the spin
states in an equal superposition of MS = +1/2 and MS =
−1/2 by means of the ESR field leads to a doubling of the
lifetime of the bound exciton. The second method makes use
of a strong ESR field that renormalizes the spin levels in such a
way that the hyperfine and Zeeman splitting of the nuclear spin
is increased. As in the first method, the photons of the ESR
field dress the spin states of the donor electron.

The Hamiltonian for the electron–nucleus system is

Hs = geμBH · S − gnμnH · I + AS · I (30)

in the generalized rotating frame. The energy levels of the
electron and nuclear spin are shown in figure 6. Since we
intend to apply a strong microwave field for the ESR resonance
for both of our methods, we also quantize the microwave
field for the following description of both of our methods,
the ODMR method and the frequency-resolved measurement.
Typical external magnetic fields used in experiments are Hz =
3.0, 5.0 and 7.0 T. In a field of Hz = 3.0 T the Zeeman
splittings of the electron and nuclear spin are geμB Hz =
0.35 meV and gnμn Hz = 0.21 μeV, respectively. The
hyperfine splitting is A = 0.50 μeV. Thus the splitting
between |↑e↑n〉 and |↑e↓n〉 is �↑e = E↑e↑n − E↑e↓n = A/2 −
gnμn Hz = 0.03 μeV, whereas the splitting between |↓e↑n〉
and |↓e↓n〉 is �↓e = E↓e↓n − E↓e↑n = A/2 + gnμn Hz =
0.46 μeV. The hyperfine and Zeeman splittings for Hz =
3.0, 5.0 and 7.0 T are shown in table 1.

In order to quantize the strong microwave field, we follow
here the derivation of dressed states given in [29]. The
Hamiltonian of the quantized photon field is

Hp = h̄ωâ†â, (31)

where â (â†) is the annihilation (creation) operator of a photon.
The interaction between the microwave photons and spin of the
electron of the phosphorus donor is described by

V = −μ · B, (32)

where the quantized magnetic field is given by

B =
√

h̄

2ε0c2
p L3

[
â

i (k × ε)

k
+ â† (−i) (k × ε∗)

k

]
, (33)

where cp is the light velocity. The spin–photon interaction can
be simplified to

V = gsp
[
(e · S) â + (

e∗ · S
)

â†] . (34)
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We use the circular polarization vectors

e± = 1√
2

(
ex ± iey

)
(35)

and the spin ladder operators S± = Sx ± iSy . Then we obtain

Vσ+ = gsp√
2

(
âS+ + â†S−

)
,

Vσ− = gsp√
2

(
âS− + â†S+

)
.

(36)

There are two coupled states
∣∣φ↓e

〉 = |↓e, N + 1〉 ,
∣∣φ↑e

〉 = |↑e, N〉 .
(37)

If the interaction vanishes, the energies are E↓e = (N+1)h̄ω−
1
2 h̄ω0 and E↑e = Nh̄ω + 1

2 h̄ω0. The energy separation is
h̄ω↓e↑e = h̄(ω − ω0). The matrix elements of Vσ+ read

〈
φ↓e

∣∣ Vσ+
∣∣φ↓e

〉 = 〈
φ↑e

∣∣ Vσ+
∣∣φ↑e

〉 = 0,

〈
φ↑e

∣∣ Vσ+
∣∣φ↓e

〉 = gsp√
2

√
N + 1 ≈ h̄� = gsp

√ 〈N〉
2
.

(38)

The eigenstates are

|χ1(N)〉 = sin θ
∣∣φ↓e

〉 + cos θ
∣∣φ↑e

〉
,

|χ2(N)〉 = cos θ
∣∣φ↓e

〉 − sin θ
∣∣φ↑e

〉
,

(39)

where tan 2θ = −�/(ω − ω0), 0 � 2θ < π . The
eigenenergies are

E1/2 =
(

N + 1

2

)
h̄ω ± h̄

√(
ω − ω0

2

)2

+
(
�

2

)2

. (40)

Let us tune the oscillating transverse microwave field to the
ESR transition between |↑e↑n〉 and |↓e↑n〉, which we need for
both of our methods. Then the eigenstates are

∣∣χ↑n1
〉 = (∣∣φ↓e

〉 + ∣∣φ↑e

〉) |↑n〉 /
√

2,
∣∣χ↓n1

〉 = (
sin θ

∣∣φ↓e

〉 + cos θ
∣∣φ↑e

〉) |↓n〉 /
√

2,
∣∣χ↓n2

〉 = (
cos θ

∣∣φ↓e

〉 − sin θ
∣∣φ↑e

〉) |↓n〉 /
√

2,
∣∣χ↑n2

〉 = (∣∣φ↓e

〉 − ∣∣φ↑e

〉) |↑n〉 /
√

2,

(41)

where tan 2θ = − 1
2 geμB Hx/A. The eigenenergies of the

electron–nucleus system are

E↑n1 = − geμB

2
Hz − gnμn

2
Hz − A

4
− geμB Hx

2
,

E↓n1 = − geμB

2
Hz + gnμn

2
Hz +

√(
A

4

)2

+
(

geμB Hx

2

)2

,

E↓n2 = geμB

2
Hz + gnμn

2
Hz −

√(
A

4

)2

+
(

geμB Hx

2

)2

,

E↑n2 = geμB

2
Hz − gnμn

2
Hz + A

4
+ geμB Hx

2
.

(42)

Table 2. Change of the hyperfine and Zeeman splitting of the spin
states of the donor electron.

Hz (T) �↑e (μeV) �↓e (μeV) �2 (μeV) �1 (μeV)

3.0 0.03 0.46 0.10 0.53
5.0 −0.11 0.61 −0.04 0.68
7.0 −0.25 0.75 −0.18 0.82

The oscillator strength for the exciton recombination in Si:P
is f = 7.1 × 10−6 (see [17]). The binding energy of the
exciton to the phosphorus donor is Ebinding = 4.7 meV. The
recombination rate is about w = 400 s−1. This leads to an
interaction energy of

Eint = √
h̄w	 = 12 neV, (43)

where 	 = 100 μeV is the linewidth of the recombination.
Let us first investigate the ODMR method. If the

electron–photon interaction energy Eint is much weaker than
the microwave coupling energy geμB Hx , the states |χ↑n1〉,
|χ↓n1〉, |χ↓n2〉, and |χ↑n2〉 are good eigenstates. Then the
ODMR method works, because the final state of the radiative
recombination is given by |χ↑n1〉, which doubles the lifetime
of the bound exciton. In order to double the lifetime of the
bound exciton in an experiment, the transverse microwave field
should have a strength of at least Hx = 1.0 G, leading to a
microwave coupling energy of geμB Hx = 10.0 neV.

The calculations shown in equation (42) also reveal our
second method for improving the resolution of the optical
readout of a single nuclear spin, which is a frequency-resolved
photon measurement. It can be seen from equation (42) that the
hyperfine splittings are increased by means of the ESR field,
which effectively increases the optical resolution. In order
to obtain at least a 10% increase of the hyperfine + Zeeman
splitting of the two lowest energy levels, the oscillating
transverse magnetic field must have a strength of 10.0 G, which
yields the transverse Zeeman splittings of the electron and
nuclear spin of geμB Hx = 0.12 μeV and gnμn Hx = 0.07 neV,
respectively. For a longitudinal magnetic field of Hz = 3.0 T,
the shifted hyperfine splitting is �2 = E↑n2 − E↓n2 =
0.10 μeV, whereas �1 = E↓n1 − E↑n1 = 0.53 μeV. The
shifted hyperfine and Zeeman splittings for Hz = 3.0, 5.0, and
7.0 T are shown in table 2.

Frequency-resolved photon detection has the advantage
that only few photons need to be detected to determine the
spin of the nucleus, whereas the ODMR measurement needs
to be done in a time ensemble of photon measurements in
order to determine the radiative recombination time. Maybe
the hyperfine + Zeeman splitting of �↓e = A/2 + gnμn Hz =
0.75 μeV in a Hz = 7.0 T field is already sufficient for
frequency-resolved photon detection.

7. Conclusion

We calculated the oscillator strength of recombination of an
exciton bound to a donor electron in silicon. We showed that
the Umklapp-assisted recombination, consisting of a Coulomb
interaction between the electron of the bound exciton and
the donor electron and the recombination of the virtually
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excited electron with the hole, makes the main contribution.
The calculation of the Umklapp-assisted recombination was
done in second-order perturbation theory. We made use
of the empirical pseudopotential method to find the Bloch
wavefunctions of silicon. The calculated oscillator strength is
in good agreement with the experiment. The Umklapp-assisted
recombination of the exciton can be used to read out the spin
state of the nucleus of a phosphorus donor. Therefore we
also gave two methods to improve the resolution of the optical
detection of the nuclear spin of a donor electron in Si:P.
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Appendix A. Bandstructure of silicon

We choose the empirical pseudopotential method to calculate
the bandstructure of silicon [18–20]. A brief review of
this method is given in appendix B. We need to solve the
Schrödinger equation for the pseudowavefunction, i.e.

h̄2(k + G)2

2me
uG +

∑

G′
V0(|G − G′|)uG′ = EuG. (A.1)

We diagonalize it using the 137 G-vectors shown in table 3 and
the form factors VS(G = √

3) = −3.049 eV, VS(G = √
8) =

0.750 eV and VS(G = √
11) = 0.985 eV.

We calculate the bandstructure of silicon for 100 points
in k-space in the direction of the X point. The bandstructure is
shown in figure 1. For our Umklapp-assisted recombination the
following symmetries are important: the conduction (valence)
band at the 	 point has the symmetry 	25′ (	15), which
transforms as {yz, xz, xy} ({x, y, z}). The conduction band
at the X point has the symmetry �1, which transforms as {z}.
So the initial bound electron state before the recombination has
the symmetry�1 and the hole has the symmetry 	15. Since the
spin–orbit splitting at the 	 point is�so = 0.044 eV (see [26]),
the heavy-hole states including spin are represented by

∣∣∣∣J = 3

2
; M = 3

2

〉
= 1√

2
(|yz〉 + i |xz〉) |↑〉 ,

∣∣∣∣J = 3

2
; M = 1

2

〉
=

√
2

3
|xy ↑〉 − 1√

6
|(y + ix)z ↓〉 ,

∣∣∣∣J = 3

2
; M = −1

2

〉
=

√
2

3
|xy ↓〉 + 1√

6
|(y − ix)z ↑〉 ,

∣∣∣∣J = 3

2
; M = −3

2

〉
= 1√

2
(|yz〉 − i |xz〉) |↓〉 .

(A.2)
That is the origin of the selection rules found experimentally
in [11].

Table 3. G-vectors used in the empirical pseudopotential
calculation.

G G2 Direction No. Sum

(000) 0 	 1 1
(111) 3 2L 8 9
(200) 4 2X 6 15
(220) 8 2K 12 27
(311) 11 2L + 2X 24 51
(222) 12 4L 8 59
(400) 16 4X 6 65
(331) 19 2L + 2K 24 89
(420) 20 2X + 2K 24 113
(422) 24 4L + 2X 24 137

Appendix B. Empirical pseudopotential method

We give here a brief review of the empirical pseudopotential
method. At each lattice site there is an atom with a nucleus,
core electrons and valence electrons. The attractive nuclear
potential Vn is large and varies strongly throughout the lattice.
The main observation is that Vn is almost canceled by the
repulsive potential Vrep produced by the core electrons. So
we need to consider only the valence electrons moving in
a net weak one-electron potential Vp, which is called the
pseudopotential.

The full Bloch wavefunctions can be expressed as

� = φ +
∑

t

αtϕt . (B.1)

� must be orthogonal to the core wave functions ϕt , i.e.
〈ϕt |�〉 = 0, which yields

αt = − 〈ϕt |φ〉 . (B.2)

Then applying the Hamiltonian Hn = p2/2me + Vn to� leads
to the Schrödinger equation

(
p2

2me
+ Vn + Vrep

)
φ = Eφ, (B.3)

where the short-range non-Hermitian repulsive potential is
given by

Vrepφ =
∑

t

(E − Et) ϕt 〈ϕt |φ〉 , (B.4)

with E being the full energy eigenvalue of �. φ is called the
pseudowavefunction. Since the crystal potential is periodic,
the pseudopotential Vp = Vn + Vrep and can be expanded in a
Fourier series over the reciprocal lattice vectors G, i.e.

Vp =
∑

G

Ṽ0(G)eiG·r, (B.5)

where

Ṽ0(G) = 1

L3

∫
d3r V0(r)e−iG·r. (B.6)

For zincblende and diamond lattices a two-atom basis is
usually chosen, such that

V0(r) = Vcation(r − τ )+ Vanion(r + τ ), (B.7)
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where τ = (1, 1, 1)d/8. Then the Fourier potential reads

Ṽ0(G) = eiG·τ Ṽcation(G)+ e−iG·τ Ṽanion(G). (B.8)

The Fourier coefficients can be rewritten in terms of the
symmetric and antisymmetric form factors ṼS = Ṽcation+Ṽanion

and ṼA = Ṽcation − Ṽanion. Thus

Ṽ0(G) = cos(G · τ )ṼS(G)+ i sin(G · τ )ṼA(G), (B.9)

where the prefactors of the form factors are the structure
factors. Since silicon has a diamond lattice, ṼA(G) = 0.

The pseudowavefunction can also be expanded in a
Fourier series, i.e.

φ(r) = eik·ru(r) = eik·r ∑

G

uGeiG·r. (B.10)

Inserting the pseudowavefunction φ and the pseudopotential
Vp into equation (B.3) yields

h̄2(k + G)2

2me
uG +

∑

G′
V0(|G − G′|)uG′ = EuG. (B.11)

Diagonalization of this Hamiltonian yields an effective mass
Hamiltonian of the form Heff = p2/2m∗, which determines
the bandstructure shown in figure 1.
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